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1. INTRODUCTION AND 

PRELIMINARIES: 

        Fixed point theory is an important 

discipline in mathematics because of its 

results which are utilized to investigate the 

existence of solutions for the problems in 

applied sciences and engineering. Many 

fixed point results have been widely 

generalized throughout the years in various 

directions by introducing new metric spaces 

and setting of new contraction mappings. 

The results in fixed point theory can be 

noticed in geometry, computational 

algorithms, economics, fluid dynamics, 

micro-structures, nonlinear sciences, 

medical fields and optimization theory.  

        On the other hand, some authors are 

interested and have tried to give 

generalizations of metric spaces in different 

ways. In 1963 Gahler [6] gave the concepts 

of 2- metric space further in 1992 Dhage [2] 

modified the concept of 2- metric space and 

introduced the concepts of D-metric space 

also proved fixed point theorems for 

selfmaps of such spaces. Later researchers 

have made a significant contribution to fixed 

point of D- metric spaces in [1], [3], and [4]. 

Unfortunately almost all the fixed point 

theorems proved on D-metric spaces are not 

valid in view of papers [7], [8] and [9].  

Sedghi et al. [10] modified the concepts of 

D- metric space and introduced the concepts 

of D*- metric space also proved a common 

fixed point theorems in D*- metric space. 

       Recently, Sedghi et al [11] introduced 

the concept of S- metric space which is 

different from other space and proved fixed 

point theorems in S-metric space. They also 

gives some examples of S- metric spaces 

which shows that S- metric space is different 

from other spaces. In fact they give 

following concepts of S- metric space. 

 

Definition 1.1([11]): Let X be a non-empty 

set. An S-metric space on X is a function             

S: X3 → [0, ∞) that satisfies the following 

conditions, for each x, y, z, a ∈ X 

(i) S(x, y, z) ≥ 0  
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(ii) S(x, y, z) = 0 if and only if x 

= y = z. 

(iii) S(x, y, z) ≤ S(x, x, a) + S(y, 

y, a) + S (z, z, a)    

The pair (X, S) is called an S–metric space. 

Immediate examples of such S-metric spaces 

are: 

 

Example1.2: Let  be the real line. Then 

S(x, y, z) = |x – y| + |y – z| + |z – x| for each           

  x, y, z ∈  is an S-metric on . This S-

metric is called the usual S-metric on .  

 

Example 1.3:  Let X = 2, d be the ordinary 

metric on X.  

Put S(x, y, z) = d(x, y) + d(y, z) + d (z, x) is 

an S- metric on X. If we connect the points 

x, y, z by a line, we have a triangle and if we 

choose a point a mediating this triangle then 

the inequality S(x, y, z) ≤ S(x, x, a) + S(y, y, 

a) + S (z, z, a) holds. In fact   

S(x, y, z) = d(x, y) + d(y, z) + d (z, x) 

                ≤ d(x, a) + d(a, y) + d (y, a) + d(a, 

z) + d(z, a) + d (a, x) 

               = S(x, x, a) + S(y, y, a) + S (z, z, a) 

 

Example1. 4: Let X = n and || . || a norm 

on X, then S(x, y, z) = ||x – z|| + ||y – z|| is an 

S-metric on X.  

 

Remark1. 5: it is easy to see that every D*-

metric is S-metric, but in general the 

converse is not true, see the following 

example. 

 

 Example1. 6:  Let X = n and || . || a norm 

on X, then S(x, y, z) = ||y + z – 2x|| + ||y – z|| 

is an S-metric on X, but it is not D*-metric 

because it is not symmetric. 

 

Lemma1. 7: In an S–metric space, we have 

S(x, x, y) = S(y, y, x). 

Proof: By the third condition of S-metric, 

we get 

  S(x, x, y) ≤ S(x, x, x) + S(x, x, x) + S(y, y, 

x) = S(y, y, x)…… (1) 

  and similarly 

S(y, y, x) ≤ S(y, y, y) + S(y, y, y) + S(x, x, 

y) = S(x, x, y)……(2) 

Hence, by (1) and (2), we obtain S(x, x, y) = 

S(y, y, x). 

 

Definition1.8: Let (X, S) be an S-metric 

space. For x ∈X and r > 0, we define the 

open ball BS(x, r) and closed ball BS[x, r] 

with a center x and a radius r as follows                                     

                   BS(x, r) = {y ∈ X; S(x, y, y) < r}  

                   BS[x, r] = {y ∈ X; S(x, y, y) ≤ r} 

For example, Let X = . Denote S(x, y, z) = | 

y + z – 2x | + | y – z | for all x, y, z ∈ . 
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Therefore BS(1, 2) = {y ∈  ; S(y, y, 1) < 2} 

            = {y∈  ; | y – 1|< 1} = (0, 2). 

 

Definition 1.9: Let (X, S) be an S–metric 

space and A ⊂ X.  

 (1)If for every x ∈ A, there is a r > 0 such 

that BS(x, r) ⊂ A, then the subset A called an     

 open subset of X 

(2) If there is a r > 0 such that S(x, x, y) < r 

for all x, y ∈ A then A is said to be S–

bounded. 

             (3)  A sequence {xn} in X converge to x if 

and only if S(xn, xn, x) → 0 as n →∞. That is 

for        

            each ∈ > 0, there exists n0 ∈  such that for 

all n ≥ n0, S(xn, xn, x) < ∈ and we denote this 

by  = x  

             (4) A sequence {xn} in X is called a 

Cauchy sequence if for each ∈ > 0, there 

exists n0 ∈  such that S(xn, xn, xm) < ∈ for 

each m , n ≥ n0   

(5) The S–metric space (X, S) is said to be 

complete if every Cauchy sequence is 

convergent sequence. 

           (6) Let τ be the set of all A  X with x ∈ A if 

and only if there exists r > 0 such that             

            BS(x, r) A. Then τ is a topology on X 

(induced by the S-metric S).                

          (7) If (X, τ) is a compact topological space we 

shall call (X, S) is a compact S–metric 

space. 

 

Lemma1. 10([11]): Let (X, S) be an S-

metric space. If r > 0 and x ∈ X, then the 

open ball BS(x, r) is an open subset of X. 

 

  Lemma1. 11([11): Let (X, S) be an S-

metric space. If the sequence {xn} in X 

converges to x, then x is unique. 

 

Lemma1. 12([11]): Let (X, S) be an S-

metric space. If the sequence {xn} in X 

converges to x, then {xn} is a Cauchy 

sequence.  

 

Lemma1. 13([11]): Let (X, S) be an S-

metric space. If there exists sequences 

{xn} and {yn} such      

                          that  = x and  = y, 

then   = S(x, x, y). 

 

Lemma1. 14: Let (X, d) be a metric space. 

Then we have  

1. Sd(x, y, z) = d(x, y) + d(y, z) + d(z, 

x) for all x, y, z ∈ X is an S-metric on X 

2. xn x in (X, d) if and only if Xn 

x in (X, Sd) 

3. {xn} is a Cauchy sequence in (X, 

d) if and only if {xn} is a Cauchy sequence 

in (X, Sd) 
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4. (X, d) is complete if and only if (X, 

Sd) is complete                                                            

Proof: (1) See [ Example (3), Page 260] 

(2) xn x in (X, d) if and only if d(xn, x) 

0, if and only if Sd(xn, xn, x) = 3d(xn, x) 

0 that is, xn x in (X, Sd) 

(3)  {xn}is a Cauchy in  (X, d) if and only if 

d(xn, xm) 0 as n, m , if and only if       

Sd(xn, xn, xm) = 3d(xn, xm) 0 n, m ,  

that is, {xn} is Cauchy in (X, Sd) 

(4) It is a direct consequence of (2) and (3) 

 

Notation: For any selfmap T of X, we 

denote T(x) by Tx.  

If P and Q are selfmaps of a set X, then any 

z ∈ X such that Pz = Qz = z is called a 

common fixed point of P and Q. 

Two selfmaps P and Q of X are said to be 

commutative if PQ = QP where PQ is their 

composition PoQ defined by (PoQ) x = PQx 

for all x ∈ X. 

 

             Definition 1.15: Suppose P and Q are 

selfmaps of a S–metric space (X, S) 

satisfying the condition Q(X)  P(X). Then 

for any x0 ∈ X, Qx0 ∈ Q(X) and hence Qx0 ∈ 

P(X), so that there is a x1 ∈ X with Qx0 = 

Px1, since Q(X)  P(X). Now Qx1 ∈ Q(X) 

and hence there is a x2 ∈ X with Qx2 ∈ 

Q(X)  P(X) so that Qx1 = Px2.  Again Qx2 ∈ 

Q(X) and hence Qx2 ∈ P(X) with Qx2 = Px3. 

Thus repeating this process to each x0 ∈ X, 

we get a sequence {xn} in X such that Qxn = 

Pxn+1 for n ≥ 0. We shall call this sequence 

as an associated sequence of x0 relative to 

the two selfmaps P and Q. It may be noted 

that there may be more than one associated 

sequence for a point x0 ∈ X relative to 

selfmaps P and Q. 

    Let P and Q are selfmaps of a S-metric 

space (X, S) such that Q(X)  P(X). For any 

xo ϵ X, if {xn} is a sequence in X such that  

Qxn = Pxn+1 for  n ≥ 0, then {xn} is called an 

associated sequence of x0 relative to the 

two selfmaps P and Q.  

Definition 1.16: A function Ø: [0, ∞) → [0, 

∞) is said to be a contractive modulus, if            

Ø (0) = 0 and Ø (t) < t for t > 0. 

Definition 1.17: A real valued function Ø 

defined on X ⊆  is said to be upper semi 

continuous, if n) ≤ Ø (t) for 

every sequence {tn} in X with tn → t as n → 

∞. 

Definition 1.18: If P and Q are selfmaps of 

a S-metric space (X, S) such that for every 

sequence {xn} in X with n = n 

= t, we have  
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(PQxn, QPxn, QPxn) = 0, then we say 

that P and Q are compatible. 

 

 THE MAIN RESULTS: 

2.1 Theorem. Suppose P, T, I and J be 

selfmaps of a S–metric space (X, S) 

satisfying the                          

conditions  

(i) P ( X ) ⊆ J ( X ) and  T ( X ) ⊆ I 

( X )  

(ii) S(Px, Ty, Ty) ≤ ρ (x, y) for all x, 

y ∈ X ,  

where 

 (ii)′ ρ ( x , y ) = max{S(Ix, Jy, Jy), 

S(Ix, Px, Px), S(Jy, Ty, Ty),                               

  S(Ix, Ty, Ty),  S(Jy, Px, Px)} for  x, y ∈ 

X 

(iii)      P, T, I and J are continuous.  

(iv)      the pairs (P, I) and (T, J) are 

compatible,  and 

(v) there is a point x0 ∈ X  and an 

associated sequence {xn} of x0  

relative to the four  selfmaps 

such that the sequences {Px2n} 

and {Tx2n+1} converge to 

some point z ∈ X  

Further, if  

   

(vi) there exists (a, b)  X2  such 

that f(a, b) =  ,  

where  

(vi)′ f(x, y) =    

      then P, T, I and J have a unique common 

fixed point  z  X. also z is the unique fixed 

point for the pair (P, I) and for the pair (T, 

J). 

Proof: First suppose that ρ(x', y') = 0 

for some x', y'  X. Then     

(2. 1. 1) max{S(Ix', Jy', Jy'), S(Ix', Px', Px'), 

S(Jy', Ty', Ty'),                                                 

 S(Ix', Ty', Ty'),  S(Jy', Px', Px')} = 0,  

 which implies  

(2.1.2)  Ix' = Px' = Jy' = Ty', and also 

(2. 1. 3) PIx' = P(Px') = P2x' and 

(2. 1. 4) TJy' = T(Ty') = T2y'.  Now since the 

pair (P, I) is compatible, we have  

(2.1.5)  (PIyn, IPyn, IPyn) = 0 

whenever   Pyn,, Iyn → t as n → ∞ for some t 

 X. Letting  yn = x' for n ≥ 1, then Pyn → 

Px' and Iyn → Ix' as n →∞. Therefore (2.1.5) 

gives that S(PIx', IPx', IPx') = 0 or PIx' = 

IPx'. Also since IPx' = P2x' = PIx' and Jy' = 

Ty' we get 
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ρ(Px', y') = max {S(IPx', Jy', Jy'), S(IPx', P2 

x', P2x'), S(Jy', Ty', Ty'),’  S(IPx', Ty'’, Ty'’), 

 S(Jy', P2x', P2x')} 

                  = max {S(P2x', Ty', Ty'), 0, 0,  

S(P2x', Ty', Ty'),  S(P2x', Ty', Ty')} 

                   = S(P2x', Ty', Ty'). That is            

(2. 1. 6) ρ(Pxʹ, yʹ) = S(P2x', Ty', Ty') 

Now if Ty′ ≠ P2x', then by (ii), we have  

(2.1.7) S(P2x', Ty', Ty') ˂ ρ (Px', y') 

Thus (2.1.6) and (2.1.7) contradict each 

other if Ty′ ≠ P2x'. Therefore P2xʹ = Tyʹ. 

Further, from (2. 1. 2) 

(2. 1. 8) P2xʹ = Ty' = P(Px') =PTyʹ and so Ty' 

= z(say) is a fixed point of P. Again, by (2. 

1. 2)  

(2. 1. 9) Iz = ITy' = IPx' = PTy' = Pz = z. 

Therefore Pz = Iz = z, showing that z is a 

common fixed point of  P and I. Again since 

the pair (T, J) is compatible, we have                    

(TJyn, JTyn, JTyn) = 0. Whenever Tyn,, 

Jyn → t as n → ∞ for some t X.           

Taking  yn = y', we find that  Tyn → Ty',  Jyn 

→ Jy' as n →∞. Therefore (2.1.5) gives that                 

(2. 1. 10) S(TJy', JTy', JTy') = 0 or TJy' = 

JTy'.  

Now if Px′ ≠ T2y', then by (ii), we have  

(2.1.11) S(Px', T2y', T2y') ˂ ρ(x', Ty') 

But, by (2. 1. 2) and (2. 1. 4)we have 

ρ(x', Ty') = max {S(Ix', JTy', JTy'), S(Ix', 

Px', Px'), S(JTy', T2y', T2y'),’   S(Ix', T2y', 

T2y'),  S(JTy', Px', Px')} 

                   = S(Px', T2y', T2y'). That is,  

(2. 1. 12) ρ (xʹ, Tyʹ) = S(Pxʹ, T2yʹ, T2yʹ) 

Thus  (2. 1. 11) and (2. 1. 12) contradict 

each other if Pxʹ ≠ T2yʹ.  

Therefore Pxʹ = T2yʹ. Hence,  by (2. 1.10) 

and (2. 1. 2), we have  

(2. 1. 13)  Px' = T2y' = T(Ty') = TJy' = JTy' = 

JPxʹ, showing that Pxʹ = zʹ is a fixed point of 

J. Further 

(2. 1. 14) Tzʹ = TPx' = TJy' = JTy' = JPxʹ = 

Jzʹ = zʹ and therefore Tzʹ = Jzʹ = zʹ, showing 

that zʹ is a common fixed point of T and J.  

Now we prove that z = zʹ. 

First note that, if z ≠ z', then by (ii), we have   

(2. 1. 15) S(z, z', z') = S(Pz, Tz', Tz') ˂  ρ(z, 

z'). But 

 (2. 1. 16) ρ (z,, z') = max {S(Iz, Jz', Jz'), 

S(Iz, Pz, Pz), S(Jz', Tz', Tz'),  S(Iz, Tz', 

Tz'),  S(Jz', Pz, Pz)} = 0 

                  = max {S(z, z', z'), 0, 0,  S(z, z', 

z'),  S(z, z', z')}  

      = S(z, z', z'),  

Since  (2. 1. 15) and (2. 1. 16) 

contradict each other if z ≠ zʹ, it follows that 
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z = z'. Hence z is the unique common fixed 

point of P, T, I and J. 

 Now suppose that ρ(x, y) > 0 for all x, y  

X, so that f(x, y) is well defined. Now by the 

inequality (ii), we find that f(x, y) ˂ 1 for all 

x, y  X. Hence if c = f(p, q) then c ≤ 1, so 

that    f(x, y) ≤ c for all x, y  X and 

therefore, from (vi)ʹ S(Px, Ty, Ty) ≤ c ρ(x , 

y) for all x, y  X 

Since, by hypothesis, all the conditions of 

the corollary holds for the four selfmaps P, 

T, I and J; it follows that they have a 

common fixed point z  X. Further z is the 

unique common fixed point of P and I; and 

of T and J. 

To prove the uniqueness of z, let w be 

another common fixed point of P, T, I and J. 

If w ≠ z, then by (ii), we have 

(2. 1. 17)  S(z, w, w) = S(Pz, Tw, Tw) ˂  

ρ(z, w) 

 (2. 1. 18)  ρ (z,, w)   = max {S(Iz, Jw, Jw),  

S(Iz, Pz, Pz), S(Jw, Tw, Tw),  S(Iz, Tw, 

Tw),  S(Jw, Pz, Pz)}  

                               = max {S(z, w, w), 0, 0, 

 S(z, w, w),  S(z, w, w)} 

                   = S(z, w, w),  

 Now (2. 1. 17) and (2. 1. 18) contradict 

each other if z ≠ w. Therefore z = w, 

showing z is the unique common fixed point 

of P, T, I and J. Further z is the unique 

common fixed point of P and I; and of T and 

J. 

 Now we prove some consequences of 

Theorem 2. 1 

2.2 Corollary: Suppose (X, S) is a S-metric 

space and P, T, I and J are selfmaps of X 

satisfying conditions (i), (ii), (iii) and (iv) of 

Theorem 2.1. Further, if (X, S) is compact, 

then P, T, I and J have a unique common 

fixed point z. Also z is the unique common 

fixed point for the pair P and I; and for the 

pair T and J. 

Proof: Since (X, S) is a compact S-metric 

space, it is complete and  therefore for each  

x0  X and for any associated sequence {xn} 

of x0 relative to four selfmaps such that the 

sequences {Px2n} and {Tx2n+1} converge to 

some z  X and hence condition (v) of 

Theorem 2.1 holds . Also, if (X, S) is 

compact S-metric space, then f(x, y) is a 

continuous function on the compact S-metric 

space X2. Therefore we can find (a, b)  X2 

such that f(a, b) = , proving 

that the condition (vi) of the Theorem 2.1.  

Hence  by Theorem 2. 1, the conclusion of 

the corollary follows. 

2.3 Corollary ([5]):  Suppose P, T, I and J 

are four selfmaps of metric space (X, 

d) such that  
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(i)     P(X) ⊆ J(X) and T(X) ⊆ I(X) 

(ii)      d(Px, Ty) ˂ ρ0(x, y) for all x, 

y  X.   

          where 

    ρ0(x, y) = max {d(Ix, Jy), d(Ix, 

Px), d(Jy, Ty),  d(Ix, Ty),  d(Jy, Px)} 

(iii)   P, T, I and J are continuous on 

X. and  

(iv)   PI=IP and TJ = JT, further if  

(v)    X is compact. 

Then the four selfmaps P, T, I and J have a 

unique common fixed point z  X. Also z is 

the unique common fixed point of P and I; 

and of T and J. 

Proof: Given (X, d) is a metric space 

satisfying condition (i) to (v) of the 

corollary.               If S(x, y, z) = max{d(x, 

y), d(y, z), d(z, x)}, then (X, S) is a S-metric 

space and   S(x, y, x) = d(x, y). Therefore 

(ii) can be written as S(Px, Ty, Ty) ˂ ρ(x, y) 

for all x, y  X, where ρ(x, y) = max {S(Ix, 

Jy, Jy), S(Ix, Px, Px), S(Jy, Ty, Ty),  S(Ix, 

Ty, Ty),  S(Py, Tx, Tx)}, which is the same 

as condition (ii) of Theorem 2.1. Also since 

(X, d) is complete, we have (X, S) is 

complete, by Corollary 1.14. Now P and T 

are selfmaps on  (X, S) satisfying conditions 

of Corollary 2.2 and hence the corollary 

follows. 
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